"We humans always have yearned to understand more about the origin and evolution of our universe," says Abhay Ashtekar, the senior author of the paper. "So it is an exciting time in our group right now, as we begin using our new paradigm to understand, in more detail, the dynamics that matter and geometry experienced during the earliest eras of the universe, including at the very beginning." Ashtekar is the Holder of the Eberly Family Chair in Physics at Penn State and the director of the university's Institute for Gravitation and the Cosmos. Coauthors of the paper, along with Ashtekar, are postdoctoral fellows Ivan Agullo and William Nelson.
The new paradigm provides a conceptual and mathematical framework for describing the exotic "quantum-mechanical geometry of space-time" in the very early universe. The paradigm shows that, during this early era, the universe was compressed to such unimaginable densities that its behavior was ruled not by the classical physics of Einstein's general theory of relativity but by an even more fundamental theory that also incorporates the strange dynamics of quantum mechanics. The density of matter was huge then—10 to the 94 grams (10^94) per cubic centimeter, as compared with the density of an atomic nucleus today, which is only 10 to the 14 grams (10^14).
In this bizarre quantum-mechanical environment—where one can speak only of probabilities of events rather than certainties—physical properties naturally would be vastly different from the way we experience them today. Among these differences, Ashtekar says, are the concept of "time," as well as the changing dynamics of various systems over time as they experience the fabric of quantum geometry itself.
No space observatories have been able to detect anything as long ago and far away as the very early eras of the universe described by the new paradigm. But a few observatories have come close. Cosmic background radiation has been detected in an era when the universe was only 380,000 years old. By that time, after a period of rapid expansion called "inflation," the universe had burst out into a much-diluted version of its earlier super-compressed self. At the beginning of inflation, the density of the universe was a trillion times less than during its infancy, so quantum factors are much less important in ruling the large-scale dynamics of matter and geometry.
Observations of the cosmic background radiation show that the universe had a predominantly uniform consistency after inflation, except for a light sprinkling of some regions that were more dense and others that were less dense. The standard inflationary paradigm for describing the early universe, which uses the classical-physics equations of Einstein, treats space-time as a smooth continuum. "The inflationary paradigm enjoys remarkable success in explaining the observed features of the cosmic background radiation. Yet this model is incomplete. It retains the idea that the universe burst forth from nothing in a Big Bang, which naturally results from the inability of