Astrophysics And Physical Cosmology: Olbers Paradox In Action

Words: 1903
Pages: 8

Olbers' paradox Olbers' paradox in action
In astrophysics and physical cosmology, Olbers' paradox, named after the German astronomer Heinrich Wilhelm Olbers (1758–1840) and also called the "dark night sky paradox", is the argument that the darkness of the night sky conflicts with the assumption of an infinite and eternal static universe. The darkness of the night sky is one of the pieces of evidence for a non-static universe such as the Big Bang model. If the universe is static, homogeneous at a large scale, and populated by an infinite number of stars, any sight line from Earth must end at the (very bright) surface of a star, so the night sky should be completely bright. This contradicts the observed darkness of the night.[1]
Contents
[hide]
• 1History
• 2The paradox
• 3The mainstream explanation
• 4Alternative explanations o 4.1Steady state o 4.2Finite age of stars o 4.3Brightness
o
…show more content…
for temperature 2.7 K it is 40 fJ/m3 ... 4.5×10−31 kg/m3 and for visible temperature 6000 K we get 1 J/m3 ... 1.1×10−17 kg/m3. But the total radiation emitted by a star (or other cosmic object) is at most equal to the total nuclear binding energy of isotopes in the star. For the density of the observable universe of about 4.6×10−28 kg/m3and given the known abundance of the chemical elements, the corresponding maximal radiation energy density of 9.2×10−31 kg/m3, i.e. temperature 3.2 K (matching the value observed for the optical radiation temperature by Arthur Eddington[10][11]). This is close to the summed energy density of the cosmic microwave background and thecosmic neutrino background. The Big Bang hypothesis predicts that the CBR should have the same energy density as the binding energy density of the primordial helium, which is much greater than the binding energy density of the non-primordial elements; so it gives almost the same result. However the steady-state model does not predict the angular distribution of the microwave background temperature