The term work was introduced in 1826 by the French mathematician Gaspard-Gustave Coriolis[1][2] as "weight lifted through a height", which is based on the use of early steam engines to lift buckets of water out of flooded ore mines. The SI unit of work is the newton-metre or joule (J).
The work done by a constant force of magnitude F on a point that moves a displacement (not distance) s in the direction of the force is the product,
W = Fs.
For example, if a force of 10 newtons (F = 10 N) acts along a point that travels 2 metres (s = 2 m), then it does the work W = (10 N)(2 m) = 20 N m = 20 J. This is approximately the work done lifting a 1 kg weight from ground to over a person's head against the force of gravity. Notice that the work is doubled either by lifting twice the weight the same distance or by lifting the same weight twice the distance.
The SI unit of work is the joule (J), which is defined as the work expended by a force of one newton through a distance of one metre.
The dimensionally equivalent newton-metre (N·m) is sometimes used as the measuring unit for work, but this can be confused with the unit newton-metre, which is the measurement unit of torque. Usage of N·m is discouraged by the SI authority, since it can lead to confusion as to whether the quantity expressed in newton metres is a torque measurement, or a measurement of energy.[3]
Non-SI units of work include the erg, the foot-pound, the foot-poundal, the kilowatt hour, the litre-atmosphere, and the horsepower-hour. Due to work having the same physical dimension as heat, occasionally measurement units typically reserved for heat or energy content, such as therm, BTU and Calorie, are utilized as a measuring unit.
Work and energy[edit]
Work is closely related to energy. The law of conservation of energy states that the change in total internal energy of a system equals the added heat, minus the work performed by the system (see the first law of thermodynamics), dE = \delta Q - \delta W, where the symbol \delta indicates that heat (Q) and work (W) are inexact differentials.
From Newton's second law, it can be shown that work on a free (no fields), rigid (no internal degrees of freedom) body, is equal to the change in kinetic energy of the velocity and rotation of that body,
W = \Delta KE.
The work of forces generated by a potential function is known as potential energy and the forces are said to be conservative. Therefore work on an object that is merely displaced in a conservative force field, without change in velocity or rotation, is equal to minus the change of potential energy of the object,
W = -\Delta PE.
These formulas demonstrate that work is the energy associated with the action of a force, so work subsequently possesses the physical dimensions, and units, of