As describef for thyroid-simulating hormone, LH and FSH are large glycoproteins composed of alpha and beta subunits. The alpha subunit is identical in all three of these anterior pituitary hormones, while the beta subunit is unique and endows each hormone with the ability to bind its own receptor.
Physiologic Effects of Gonadotropins
Physiologic effects of the gonadotrophins are known only in the ovaries and testes. Together, then regulate many aspects of gonadal function in both males and females.
Luteinizing Hormone
In both sexes, LH stimulates secretion of sex steroids from the gonads. In the testes, LH binds to receptors on Leydig cells, stimulating synthesis and secretion of testosterone. Theca cells in the ovary respond to LH stimulation by secretion of testosterone, which is converted into estrogen by adjacent granulosa cells.
In females, ovulation of mature follicles on the ovary is induced by a large burst of LH secretion known as the preovulatory LH surge. Residual cells within ovulated follicles proliferate to form corpora lutea, which secrete the steroid hormones progesterone and estradiol. Progesterone is necessary for maintenance of pregnancy, and, in most mammals, LH is required for continued development and function of corpora lutea. The name luteinizing hormone derives from this effect of inducing luteinization of ovarian follicles.
Follicle-Stimulating Hormone
As its name implies, FSH stimulates the maturation of ovarian follicles. Administration of FSH to humans and animals induces "superovulation", or development of more than the usual number of mature follicles and hence, an increased number of mature gametes.
FSH is also critical for sperm production. It supports the function of Sertoli cells, which in turn support many aspects of sperm cell maturation.
Control of Gonadotropin Secretion
The principle regulator of LH and FSH secretion is gonadotropin-releasing hormone (GnRH, also known as LH-releasing hormone). GnRH is a ten amino acid peptide that is synthesized and secreted from hypothalamic neurons and binds to receptors on gonadotrophs.
As depicted in the figure to the right, GnRH stimultes secretion of LH, which in turn stimulates gonadal secretion of the sex steroids testosterone, estrogen and progesterone. In a classical negative feedback loop, sex steroids inhibit secretion of GnRH and also appear to have direct negative effects on gonadotrophs.
This regulatory loop leads to pulsatile secretion of LH and, to a much lesser extent, FSH. The