Discipline of Civil and
Environmental Engineering
Mathematics Databook
April 2011
Contents1
1.
TRIGONOMETRIC FUNCTIONS............................................................................................................. 1
2.
HYPERBOLIC FUNCTIONS...................................................................................................................... 1
3.
GEOMETRICAL FORMULAE.................................................................................................................. 2
4.
LIMITS .......................................................................................................................................................... 3
5.
SERIES........................................................................................................................................................... 3
6.
DIFFERENTIATION ................................................................................................................................... 6
7.
PARTIAL DIFFERENTIATION................................................................................................................. 6
8.
INTEGRATION ............................................................................................................................................ 7
9.
NUMERICAL ANALYSIS........................................................................................................................... 8
10.
MATRIX ALGEBRA.................................................................................................................................. 12
11.
VECTOR PRODUCTS............................................................................................................................... 14
12.
COMPLEX VARIABLES .......................................................................................................................... 15
13.
LAPLACE TRANSFORMS ....................................................................................................................... 15
14.
FOURIER SERIES ..................................................................................................................................... 17
15.
STATISTICS ............................................................................................................................................... 18
16.
ORDINARY DIFFERENTIAL EQUATIONS ......................................................................................... 26
1.
Trigonometric Functions
sin( A ± B ) = sin A cos B ± cos A sin B tan( A ± B ) =
cos( A ± B ) = cos A cos B m sin A sin B
tan A ± tan B
1 m tan A tan B
sin A + sin B = 2 sin
A+ B
A− B cos 2
2
cos A + cos B = 2 cos
A+ B
A− B cos 2
2
sin A sin B = 1 cos( A − B ) − cos( A + B )
2
sin A − sin B = 2 cos
A+ B
A− B sin 2
2
cos A − cos B = −2 sin
A+ B
A− B sin 2
2
cos A cos B = 1 cos( A + B ) + cos( A − B )
2
11
( AA−+ BB)) ]
[sin(AA+−BB))−+sin
sin A cos BB == 2 sin( sin( 2
sin 2 x = 1 1 − cos 2 x
cos 2 x = 1 1 + cos 2 x
sin 3 x = 1 3 sin x − sin 3 x
cos 3 x = 1 3 cos x + cos 3 x
2
2
4
4
sin 2 x + cos2 x = 1 sin x =
e ix − e − ix
2i
2.
Hyperbolic Functions
cosh x =
e x + e− x
2
cos x =
sinh x =
e ix + e − ix
2
e x − e− x
2
cosh ix = cos x
cos ix = cosh x
sinh ix = i sin x
sin ix = i sinh x
cosh( x ± y ) = cosh x cosh y ± sinh x sinh y
sinh( x ± y ) = sinh x cosh y ± cosh x sinh y
cosh( x ± iy ) = cosh x cos y ± i sinh x sin y
sinh( x ± iy ) = sinh x cos y ± i cosh x sin y
cosh 2 x − sinh 2 x = 1
1
3.
Geometrical formulae
3.1
Triangles
B
c
a
A
C
b
∆ = 1 bc sin A = 1 ca sin B = 1 ab sin C
Area of triangle:
2
2
2
s ( s − a )( s − b )( s − c ) where 2s = a + b + c
or
sin A sin B sin C
=
= a b c Sine Rule:
a 2 = b 2 + c 2 − 2bc cos A
Cosine Rule:
b 2 = c 2 + a 2 − 2 ca cos B c 2 = a 2 + b 2 − 2 ab cos C
3.2
Circles
Circle radius r:
Perimeter = 2πr
Length of arc