A thermonuclear weapon weighing little more than can produce an explosive force comparable to the detonation of more than 1.2 million tons of TNT. Thus, even a small nuclear device no larger than traditional bombs can devastate an entire city by blast, fire, and radiation. Nuclear weapons are considered weapons of mass destruction, and their use and control have been a major focus of international relations policy since their debut.
Two nuclear weapons have been used in the course of warfare, both times by the United States near the end of World War II. On 6 August 1945, a uranium gun-type fission bomb code-named "Little Boy" was detonated over the Japanese city of Hiroshima. Three days later, on 9 August, a plutonium implosion-type fission bomb code-named "Fat Man" was exploded over Nagasaki, Japan. These two bombings resulted in the deaths of approximately 200,000 people—mostly civilians—from acute injuries sustained from the explosions. The role of the bombings in Japan's surrender, and their ethical status, remain the subject of scholarly and popular debate.
Since the bombings of Hiroshima and Nagasaki, nuclear weapons have been detonated on over two thousand occasions for testing purposes and demonstrations. Only a few nations possess such weapons or are suspected of seeking them. The only countries known to have detonated nuclear weapons—and that acknowledge possessing such weapons—are the United States, the Soviet Union, the United Kingdom, France, the People's Republic of China, India, Pakistan, and North Korea. Israel is also widely believed to possess nuclear weapons, though it does not acknowledge having them. One state, South Africa, fabricated nuclear weapons in the past, but as its apartheid regime was coming to an end it disassembled its arsenal, acceded to the Nuclear Non-Proliferation Treaty, and accepted full-scope international safeguards. The Federation of American Scientists estimates there are more than 17,000 nuclear warheads in the world as of 2012, with around 4,300 of them considered "operational", ready for use.
All fission reactions necessarily generate fission products, the radioactive remains of the atomic nuclei split by the fission reactions. Many fission products are either highly radioactive or moderately radioactive, and as such are a serious form of radioactive contamination if not fully contained. Fission products are the principal radioactive component of nuclear fallout.
The most commonly used fissile materials for nuclear weapons applications have been uranium-235 and plutonium-239. Less commonly used has been uranium-233. Neptunium-237 and some isotopes of americium may be usable for nuclear explosives as well, but it is not clear that this has ever been implemented, and even their plausible use in nuclear weapons is a matter of scientific dispute.
Fusion weapons
The other basic type of nuclear weapon produces a large proportion of its energy in nuclear fusion reactions. Such fusion weapons are generally referred to as thermonuclear weapons or more colloquially as hydrogen bombs, as they rely on fusion reactions between isotopes of hydrogen . All such weapons derive a significant portion, and sometimes a majority, of their energy from fission. This is because a fission weapon is required as a "trigger" for the fusion reactions, and the fusion reactions can themselves trigger additional fission reactions.
Only six countries—United States, Russia, United Kingdom, People's Republic of China, France and India—have conducted