In the duodenum, trypsin catalyzes the hydrolysis of peptide bonds, breaking down proteins into smaller peptides. The peptide products are then further hydrolyzed into amino acids via other proteases, rendering them available for absorption into the blood stream. Tryptic digestion is a necessary step in protein absorption as proteins are generally too large to be absorbed through the lining of the small intestine.
Trypsin is produced in the pancreas, in the form of the inactive zymogen trypsinogen. When the pancreas is stimulated by cholecystokinin, it is then secreted into the first part of the small intestine (the duodenum) via the pancreatic duct. Once in the small intestine, the enzyme enteropeptidase activates it into trypsin by proteolytic cleavage. Auto catalysis can happen with trypsin with trypsinogen as the substrate. This activation mechanism is common for most serine proteases, and serves to prevent autodegradation of the pancreas.
Mechanism[edit]
The enzymatic mechanism is similar to that of other serine proteases. These enzymes contain a catalytic triad consisting of histidine-57, aspartate-102, and serine-195.[4] These three residues form a charge relay that serves to make the active site serine nucleophilic. This is achieved by modifying the electrostatic environment of the serine. The enzymatic reaction that trypsins catalyze is thermodynamically favorable but requires significant activation energy (it is "kinetically unfavorable"). In addition, trypsin contains an "oxyanion hole" formed by the backbone amide hydrogen atoms of Gly-193 and Ser-195, which serves to stabilize the developing negative charge on the carbonyl oxygen atom of the cleaved amides.
The aspartate residue (Asp 189) located in the catalytic