Table of common integrals
Indices and logarithms b a = c ⇔ loga c = b
´
f (x)
Trigonometry
sin x cos x
sin x + C
2
B
f (x) dx
− cos x + C
sec x cosec x cot x
c
tan x + C
−cosec x + C
sec x tan x
a
sec x + C
2
cosec x
A
− cot x + C
1 x x
C
ln |x| + C ex + C
e
b
ax a b c =
=
(Sine Rule) sin A sin B sin C
2
2
2
a = b + c − 2bc cos A
(Cosine Rule)
Area = 1 ab sin C
2
Trigonometic Identities sin(A ± B)
=
cos(A ± B)
=
tan(A ± B)
=
2
1
(1
2
sin θ =
sin A cos B ± cos A sin B
cos A cos B ∓ sin A sin B tan A ± tan B
1 ∓ tan A tan B
2
− cos 2θ)
cos θ =
1
(1
2
+ cos 2θ)
Arithmetic series a + (a + d) + (a + 2d) + (a + 3d) + . . . nth term
=
Sn
=
a + (n − 1)d
1 n [2a +
2
2
3
(n − 1)d]
Geometric series a + ar + ar + ar + . . . nth term
=
Sn
=
S∞
=
Binomial Series
ar n−1 a(1 − r n )
1−r
a provided that |r| < 1
1−r
n n (a + x)
= a + xan−1 + x2 an−2 + . . . + xn
1
2 n(n − 1) 2 n(n − 1)(n − 2) 3
(1 + x)n = 1 + nx + x + x +...
2!
3!
Maclaurin’s Series f ′′ (0) 2 f ′′′ (0) 3 f ′′′′ (0) 4 x + x + x + ... f (x) = f (0) + xf ′ (0) +
2!
3!
4!
n
1 ax ln a
+C
Integration by parts
ˆ
ˆ dv du u dx = uv − v dx dx dx Trapezium rule
ˆ b f (x) dx ≈ 1 h [y0 + 2(y1 + y2 + . . . + yn−1 ) + yn ]
2
a
Simpson’s rule
ˆ b f (x) dx a 1 h [y0
3
≈
+ 4(y1 + y3 + . . . + yn−1 )
+2(y2 + y4 + . . . + yn−2 ) + yn ] b−a and n is the number of strips.
Where h = n Newton-Raphson method
To solve f (x) = 0 with an