holy exodus Essay

Submitted By polo9797
Words: 2087
Pages: 9

propositioned Animals are multicellular, eukaryotic organisms of the kingdom Animalia (also called Metazoa). Their body plan eventually becomes fixed as they develop, although some undergo a process of metamorphosis later on in their lives. Most animals are motile, meaning they can move spontaneously and independently. All animals must ingest other organisms or their products for sustenance (see Heterotroph).
Most known animal phyla appeared in the fossil record as marine species during the Cambrian explosion, about 542 million years ago. Animals are divided into various sub-groups, some of which are: vertebrates (birds, mammals, amphibians, reptiles, fish); mollusks (clams, oysters, octopuses, squid, snails); arthropods (millipedes, centipedes, insects, spiders, scorpions, crabs, lobsters, shrimp); annelids (earthworms, leeches); sponges; and jellyfish.
Contents [hide]
1 Etymology
2 Characteristics
2.1 Structure
2.2 Reproduction and development
2.3 Food and energy sourcing
3 Origin and fossil record
4 Groups of animals
4.1 Ctenophora, Porifera, Placozoa, Cnidaria and Bilateria
4.2 Deuterostomes
4.3 Ecdysozoa
4.4 Platyzoa
4.5 Lophotrochozoa
5 Model organisms
6 History of classification
7 See also
8 References
9 Bibliography
10 External links
Etymology

The word "animal" comes from the Latin word animalis, meaning "having breath".[1] In everyday colloquial usage the word incorrectly excludes humans—that is, "animal" is often used to refer only to non-human members of the kingdom Animalia. Sometimes, only closer relatives of humans such as mammals and other vertebrates are meant in colloquial use.[2] The biological definition of the word refers to all members of the kingdom Animalia, encompassing creatures as diverse as sponges, jellyfish, insects, and humans.[3]
Characteristics

Animals have several characteristics that set them apart from other living things. Animals are eukaryotic and multicellular,[4] which separates them from bacteria and most protists. They are heterotrophic,[5] generally digesting food in an internal chamber, which separates them from plants and algae.[6] They are also distinguished from plants, algae, and fungi by lacking rigid cell walls.[7] All animals are motile,[8] if only at certain life stages. In most animals, embryos pass through a blastula stage,[9] which is a characteristic exclusive to animals.
Structure
With a few exceptions, most notably the sponges (Phylum Porifera) and Placozoa, animals have bodies differentiated into separate tissues. These include muscles, which are able to contract and control locomotion, and nerve tissues, which send and process signals. Typically, there is also an internal digestive chamber, with one or two openings.[10] Animals with this sort of organization are called metazoans, or eumetazoans when the former is used for animals in general.[11]
All animals have eukaryotic cells, surrounded by a characteristic extracellular matrix composed of collagen and elastic glycoproteins.[12] This may be calcified to form structures like shells, bones, and spicules.[13] During development, it forms a relatively flexible framework[14] upon which cells can move about and be reorganized, making complex structures possible. In contrast, other multicellular organisms, like plants and fungi, have cells held in place by cell walls, and so develop by progressive growth.[10] Also, unique to animal cells are the following intercellular junctions: tight junctions, gap junctions, and desmosomes.[15]
Reproduction and development
See also: Sexual reproduction#Animals and Asexual reproduction#Examples in animals

A newt lung cell stained with fluorescent dyes undergoing the early anaphase stage of mitosis
Nearly all animals undergo some form of sexual reproduction.[16] They have a few specialized reproductive cells, which undergo meiosis to produce smaller, motile spermatozoa or larger, non-motile ova.[17] These fuse to form zygotes, which develop into